An abstract inf-sup problem inspired by limit analysis in perfect plasticity and related applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00545246" target="_blank" >RIV/68145535:_____/21:00545246 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/10.1142/S0218202521500330" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0218202521500330</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202521500330" target="_blank" >10.1142/S0218202521500330</a>
Alternative languages
Result language
angličtina
Original language name
An abstract inf-sup problem inspired by limit analysis in perfect plasticity and related applications
Original language description
This paper is concerned with an abstract inf-sup problem generated by a bilinear Lagrangian and convex constraints. We study the conditions that guarantee no gap between the inf-sup and related sup-inf problems. The key assumption introduced in the paper generalizes the well-known Babuška–Brezzi condition. It is based on an inf-sup condition defined for convex cones in function spaces. We also apply a regularization method convenient for solving the inf-sup problem and derive a computable majorant of the critical (inf-sup) value, which can be used in a posteriori error analysis of numerical results. Results obtained for the abstract problem are applied to continuum mechanics. In particular, examples of limit load problems and similar ones arising in classical plasticity, gradient plasticity and delamination are introduced.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-11441S" target="_blank" >GA19-11441S: Efficient and reliable computational techniques for limit analysis and incremental methods in geotechnical stability</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
1793-6314
Volume of the periodical
31
Issue of the periodical within the volume
8
Country of publishing house
SG - SINGAPORE
Number of pages
31
Pages from-to
1593-1623
UT code for WoS article
000691623100003
EID of the result in the Scopus database
2-s2.0-85108244281