Inf–sup conditions on convex cones and applications to limit load analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00504440" target="_blank" >RIV/68145535:_____/19:00504440 - isvavai.cz</a>
Result on the web
<a href="https://journals.sagepub.com/doi/full/10.1177/1081286519843969" target="_blank" >https://journals.sagepub.com/doi/full/10.1177/1081286519843969</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286519843969" target="_blank" >10.1177/1081286519843969</a>
Alternative languages
Result language
angličtina
Original language name
Inf–sup conditions on convex cones and applications to limit load analysis
Original language description
The paper is devoted to a family of specific inf–sup conditions generated by tensor-valued functions on convex cones. First, we discuss the validity of such conditions and estimate the value of the respective constant. Then, the results are used to derive estimates of the distance to dual cones, which are required in the analysis of limit loads of perfectly plastic structures. The equivalence between the static and kinematic approaches to limit analysis is proven and computable majorants of the limit load are derived. Particular interest is paid to the Drucker–Prager yield criterion. The last section exposes a collection of numerical examples including basic geotechnical stability problems. The majorants of the limit load are computed and expected failure mechanisms of structures are visualized using local mesh adaptivity.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
3331-3353
UT code for WoS article
000483488900019
EID of the result in the Scopus database
2-s2.0-85065550250