All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inf–sup conditions on convex cones and applications to limit load analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00504440" target="_blank" >RIV/68145535:_____/19:00504440 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.sagepub.com/doi/full/10.1177/1081286519843969" target="_blank" >https://journals.sagepub.com/doi/full/10.1177/1081286519843969</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/1081286519843969" target="_blank" >10.1177/1081286519843969</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inf–sup conditions on convex cones and applications to limit load analysis

  • Original language description

    The paper is devoted to a family of specific inf–sup conditions generated by tensor-valued functions on convex cones. First, we discuss the validity of such conditions and estimate the value of the respective constant. Then, the results are used to derive estimates of the distance to dual cones, which are required in the analysis of limit loads of perfectly plastic structures. The equivalence between the static and kinematic approaches to limit analysis is proven and computable majorants of the limit load are derived. Particular interest is paid to the Drucker–Prager yield criterion. The last section exposes a collection of numerical examples including basic geotechnical stability problems. The majorants of the limit load are computed and expected failure mechanisms of structures are visualized using local mesh adaptivity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics and Mechanics of Solids

  • ISSN

    1081-2865

  • e-ISSN

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    3331-3353

  • UT code for WoS article

    000483488900019

  • EID of the result in the Scopus database

    2-s2.0-85065550250