All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Balancing Predictive Relevance of Ligand Biochemical Activities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F22%3A00565234" target="_blank" >RIV/68145535:_____/22:00565234 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-95929-6_26" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-95929-6_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-95929-6_26" target="_blank" >10.1007/978-3-030-95929-6_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Balancing Predictive Relevance of Ligand Biochemical Activities

  • Original language description

    In this paper, we present a technique for balancing predictive relevance models related to supervised modelling ligand biochemical activities to biological targets. We train uncalibrated models employing conventional supervised machine learning technique, namely Support Vector Machines. Unfortunately, SVMs have a serious drawback. They are sensitive to imbalanced datasets, outliers and high multicollinearity among training samples, which could be a cause of preferencing one group over another. Thus, an additional calibration could be required for balancing a predictive relevance of models. As a technique for this balancing, we propose the Platt’s scaling. The achieved results were demonstrated on single-target models trained on datasets exported from the ExCAPE database. Unlike traditional used machine techniques, we focus on decreasing uncertainty employing deterministic solvers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Uncertainty and impresision in decision making and decision support: new advances, challenges, and perspectives

  • ISBN

    978-303095928-9

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    10

  • Pages from-to

    338-348

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham

  • Event location

    Warsaw

  • Event date

    Dec 10, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000775291100026