All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376055" target="_blank" >RIV/68407700:21230/24:00376055 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/LRA.2024.3421193" target="_blank" >https://doi.org/10.1109/LRA.2024.3421193</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LRA.2024.3421193" target="_blank" >10.1109/LRA.2024.3421193</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn

  • Original language description

    Nowadays, robots can operate in environments which are not tailored for them. This allows their deployments in changing and human-populated environments, which recent advances in machine learning methods enabled. The efficiency of these methods is largely determined by the quality of their training data. An up-to-date and well-balanced training dataset is paramount for achieving robust robot operation. To achieve long-term operation, the robot has to deal with perpetual environmental changes, forcing it to keep its models up-to-date. We present an exploration method allowing a mobile robot to gather high-quality data to update its models both while performing its duties and when idle, maximizing effectivity. The robot evaluates the quality of the data gathered in the past and based on that, it creates preferences which influence how often these locations are visited. This exploration method was integrated with a self-supervised visual teach-and-repeat pipeline. We show the precision and robustness of visual-based navigation to improve when using machine-learned models trained by our exploration method. Our research resulted in a robotic navigation system that can not only annotate its training data but also ensure that its training dataset is balanced and up-to-date. The codes, datasets, trained models and examples for our experiments can be found online for better reproducibility at .

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotics and advanced industrial production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Robotics and Automation Letters

  • ISSN

    2377-3766

  • e-ISSN

    2377-3766

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    10042-10049

  • UT code for WoS article

    001329045100010

  • EID of the result in the Scopus database

    2-s2.0-85197555308