An Implementation of a Coarse-Fine Mesh Stabilized Schwarz Method for a Three-Space Dimensional PDE-Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F24%3A00586682" target="_blank" >RIV/68145535:_____/24:00586682 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/book/10.1007/978-3-031-56208-2" target="_blank" >https://link.springer.com/book/10.1007/978-3-031-56208-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-56208-2_1" target="_blank" >10.1007/978-3-031-56208-2_1</a>
Alternative languages
Result language
angličtina
Original language name
An Implementation of a Coarse-Fine Mesh Stabilized Schwarz Method for a Three-Space Dimensional PDE-Problem
Original language description
When solving very large scale problems on parallel computer platforms, we consider the advantages of domain decomposition in strips or layers, compared to general domain decomposition splitting techniques. The layer sub-domains are grouped in pairs, ordered as odd-even respectively even-odd and solved by a Schwarz alternating iteration method, where the solution at the middle interfaces of the odd-even groups is used as Dirichlet boundary conditions for the even-odd ordered groups and vice versa. To stabilize the method the commonly used coarse mesh method can be replaced by a coarse-fine mesh method. A component analysis of the arising eigenvectors demonstrates that this solution framework leads to very few Schwarz iterations. The resulting coarse-fine mesh method entails a coarse mesh of a somewhat large size. In this study it is solved by two methods, a modified Cholesky factorization of the whole coarse mesh matrix and a block-diagonal preconditioner, based on the coarse mesh points and the inner node points. Extensive numerical tests show that the latter method, being also computationally cheaper, needs very few iterations, in particular when the domain has been divided in many layers and the coarse to fine mesh size ratio is not too large.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Large-Scale Scientific Computations
ISBN
978-3-031-56207-5
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
16
Pages from-to
3-18
Publisher name
Springer Nature Switzerland AG
Place of publication
Cham
Event location
Sozopol
Event date
Jun 5, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001279202200001