All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary selected Tibetan variants of HIF pathway and risk of lung cancer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F17%3A00486602" target="_blank" >RIV/68378050:_____/17:00486602 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11110/17:10362030

  • Result on the web

    <a href="http://dx.doi.org/10.18632/oncotarget.14340" target="_blank" >http://dx.doi.org/10.18632/oncotarget.14340</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18632/oncotarget.14340" target="_blank" >10.18632/oncotarget.14340</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary selected Tibetan variants of HIF pathway and risk of lung cancer

  • Original language description

    Tibetans existed in high altitude for similar to 25 thousand years and have evolutionary selected unique haplotypes assumed to be beneficial to hypoxic adaptation. EGLN1/ PHD2 and EPAS1/HIF-2a, both crucial components of hypoxia sensing, are the two bestestablished loci contributing to high altitude adaptation. The co-adapted Tibetan-specific haplotype encoding for PHD2: p.[D4E/C127S] promotes increased HIF degradation under hypoxic conditions. The Tibetan-specific 200 kb EPAS1 haplotype introgressed from an archaic human population related to Denisovans which underwent evolutionary decay, however, the functional variant(s) responsible for high-altitude adaptation at EPAS1/ HIF-2a have not yet been identified. Since HIF modulates the behavior of cancer cells, we hypothesized that these Tibetan selected genomic variants may modify cancer risk predisposition. Here, we ascertained the frequencies of EGLN1D4E/C127S and EGLN1C127S variants and ten EPAS1/HIF-2a variants in lung cancer patients and controls in Nepal, whose population consists of people with Indo-Aryan origin and Tibetan-related Mongoloid origin. We observed a significant association between the selected Tibetan EGLN1/PHD2 haplotype and lung cancer (p= 0.0012 for D4E, p= 0.0002 for C127S), corresponding to a two-fold increase in lung cancer risk. We also observed a two-fold or greater increased risk for two of the ten EPAS1/HIF-2a variants, although the association was not significant after correcting for multiple comparisons (p= 0.12). Although these data cannot address the role of these genetic variants on lung cancer initiation or progression, we conclude that some selected Tibetan variants are strongly associated with a modified risk of lung cancer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    OncoTarget

  • ISSN

    1949-2553

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    11739-11747

  • UT code for WoS article

    000394187400089

  • EID of the result in the Scopus database