Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F18%3A00491050" target="_blank" >RIV/68378050:_____/18:00491050 - isvavai.cz</a>
Alternative codes found
RIV/61388963:_____/18:00491050 RIV/00216208:11110/18:10376032 RIV/00216208:11310/18:10376032
Result on the web
<a href="http://dx.doi.org/10.1093/hmg/ddy103" target="_blank" >http://dx.doi.org/10.1093/hmg/ddy103</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/hmg/ddy103" target="_blank" >10.1093/hmg/ddy103</a>
Alternative languages
Result language
angličtina
Original language name
Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome
Original language description
Angelman syndrome is a complex neurodevelopmental disorder caused by the lack of function in the brain of a single gene, UBE3A. The E3 ligase coded by this gene is known to build K48-linked ubiquitin chains, a modification historically considered to target substrates for degradation by the proteasome. However, a change in protein abundance is not proof that a candidate UBE3A substrate is indeed ubiquitinated by UBE3A. We have here used an unbiased ubiquitin proteomics approach, the (bio)Ub strategy, to identify 79 proteins that appear more ubiquitinated in the Drosophila photoreceptor cells when Ube3a is over-expressed. We found a significantly high number of those proteins to be proteasomal subunits or proteasome-interacting proteins, suggesting a wide proteasomal perturbation in the brain of Angelman patients. We focused on validating the ubiquitination by Ube3a of Rngo, a proteasomal component conserved from yeast (Ddi1) to humans (DDI1 and DDI2), but yet scarcely characterized. Ube3a-mediated Rngo ubiquitination in fly neurons was confirmed by immunoblotting. Using human neuroblastoma SH-SY5Y cells in culture, we also observed that human DDI1 is ubiquitinated by UBE3A, without being targeted for degradation. The novel observation that DDI1 is expressed in the developing mice brain, with a significant peak at E16.5, strongly suggests that DDI1 has biological functions not yet described that could be of relevance for Angelman syndrome clinical research.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Human Molecular Genetics
ISSN
0964-6906
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
1955-1971
UT code for WoS article
000434061500009
EID of the result in the Scopus database
2-s2.0-85048134102