All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Low-temperature phenomena in highly doped grained diamond

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F09%3A00328771" target="_blank" >RIV/68378271:_____/09:00328771 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Low-temperature phenomena in highly doped grained diamond

  • Original language description

    The contribution deals with low-temperature phenomena observed in highly boron-doped nanocrystalline diamond films grown by plasma enhanced chemical vapour deposition technique. We put special emphasis on the effects likely related to the granular structure of this material. It has been shown that the experimental data concerning critical currents, supercurrents induced by thermal noise in the normal phase and current-induced Josephson's noise in the superconductivity transition region may be consistently explained by a model of superconducting grains interconnected by a single or a few weak links having a characteristic dimension in the nanometer range.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nanoscience and Nanotechnology

  • ISSN

    1533-4880

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

  • UT code for WoS article

    000265794500052

  • EID of the result in the Scopus database