How nanocrystalline diamond films become charged in nanoscale
Result description
Electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon in sub-100 nm thickness and with intentionally high relative sp2 phase ratio (60%) is characterized on a microscopic level. By correlating Kelvin Force Microscopy, Current-Sensing Atomic Force Microscopy, micro-Raman spectroscopy and cross-sectional Scanning Electron Microscopy data we show that the charging is determined by both the surface topography (grains and grain boundaries) and complex sub-surface morphology (arrangement of grains and sp2 phase) on scales below 2 2 um2. These microscopic data and macroscopic I(V) characteristics evidence that sp2 phase dominates over diamond grains in local electrostatic charging of NCD thin films. Moreover, the tip-surface junction quality is identified as the main factor behind large variations (0.1 to 1 V) of the overall induced electrostatic charge contrast.
Keywords
nanocrystalline diamondlocal electrostatic chargingnanoparticle assemblyCS-AFMKFM
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
How nanocrystalline diamond films become charged in nanoscale
Original language description
Electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon in sub-100 nm thickness and with intentionally high relative sp2 phase ratio (60%) is characterized on a microscopic level. By correlating Kelvin Force Microscopy, Current-Sensing Atomic Force Microscopy, micro-Raman spectroscopy and cross-sectional Scanning Electron Microscopy data we show that the charging is determined by both the surface topography (grains and grain boundaries) and complex sub-surface morphology (arrangement of grains and sp2 phase) on scales below 2 2 um2. These microscopic data and macroscopic I(V) characteristics evidence that sp2 phase dominates over diamond grains in local electrostatic charging of NCD thin films. Moreover, the tip-surface junction quality is identified as the main factor behind large variations (0.1 to 1 V) of the overall induced electrostatic charge contrast.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BM - Solid-state physics and magnetism
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Diamond and Related Materials
ISSN
0925-9635
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
5
Pages from-to
39-43
UT code for WoS article
000303099700008
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BM - Solid-state physics and magnetism
Year of implementation
2012