All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Laue-Bragg monolithic beam splitter for efficient X-ray 2-beam imaging

Result description

Newly emerging techniques for probing matter simultaneously by two spatially and angularly separated X-ray beams require efficient and versatile beam splitting. We present a Laue?Bragg monolithic crystal beam splitter in the form of an L-shaped monolithic Si crystal. By simultaneous Laue and Bragg diffractions the X-ray beam is split into a transmitted polychromatic and a diffracted monochromatic branch with a spatial separation of tens of millimeters. The energy spectrum of the transmitted branch can be tuned via diffraction on a second crystal re-creating a beam intersection on the sample. We propose three multi-modal imaging setups exploiting the large angular separation of the two intersecting beams provided by the proposed optics. Photon efficiency and dual-energy operation are the main assets of our scheme as compared to other existing setups. The theoretical description for an energy range between 10 keV and 30 keV was developed.

Keywords

X-ray imagingLaue-Bragg diffractionmonolithic crystaldueal energy option

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Laue-Bragg monolithic beam splitter for efficient X-ray 2-beam imaging

  • Original language description

    Newly emerging techniques for probing matter simultaneously by two spatially and angularly separated X-ray beams require efficient and versatile beam splitting. We present a Laue?Bragg monolithic crystal beam splitter in the form of an L-shaped monolithic Si crystal. By simultaneous Laue and Bragg diffractions the X-ray beam is split into a transmitted polychromatic and a diffracted monochromatic branch with a spatial separation of tens of millimeters. The energy spectrum of the transmitted branch can be tuned via diffraction on a second crystal re-creating a beam intersection on the sample. We propose three multi-modal imaging setups exploiting the large angular separation of the two intersecting beams provided by the proposed optics. Photon efficiency and dual-energy operation are the main assets of our scheme as compared to other existing setups. The theoretical description for an energy range between 10 keV and 30 keV was developed.

  • Czech name

  • Czech description

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BH - Optics, masers and lasers

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Instruments & Methods in Physics Research Section A

  • ISSN

    0168-9002

  • e-ISSN

  • Volume of the periodical

    703

  • Issue of the periodical within the volume

    MAR

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

    59-63

  • UT code for WoS article

    000314683700010

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BH - Optics, masers and lasers

Year of implementation

2013