All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Polymeric nanofibrous scaffolds reinforced with diamond and ceramic nanoparticles for bone tissue engineering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F15%3A00470313" target="_blank" >RIV/68378271:_____/15:00470313 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985823:_____/15:00470313

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Polymeric nanofibrous scaffolds reinforced with diamond and ceramic nanoparticles for bone tissue engineering

  • Original language description

    Three types of nanofibrous scaffolds were prepared by electrospining: (1) poly(lactide-co-glycoside) (PLGA) scaffolds reinforced with 23 wt.% of diamond nanoparticles (DNPs), (2) poly(L-lactide) (PLLA) scaffolds with DNPs in concentration ranging from from 0.4 wt.% to 12.3 wt.%, and (3) PLLA scaffolds with 5 wt.% or 15 wt.% of hydroxyapatite (HAp) nanoparticles. The diameter of the nanofibers ranged between 160 and 729 nm. The nanofibers with nanoparticles were thicker and the void spaces among them were smaller. Mechanical properties of the nanoparticle-loaded scaffolds were better, as demonstrated by a rupture test in scaffolds with DNPs and by a creep behavior test in scaffolds with HAp. On PLGA scaffolds with DNPs, the human osteoblast-like MG-63 cells adhered in similar numbers and grew with similar kinetics as on pure PLGA scaffolds. Human bone marrow mesenchymal stem cells grew faster and reached higher population densities on PLGA-DNP scaffolds. However, on PLLA-based scaffolds, the activity of mitochondrial enzymes and concentration of osteocalcin in MG-63 cells decreased with increasing DNP concentration. On the other hand, the metabolic activity of MG-63 cells and content of osteocalcin in these cells were positively correlated with the HAp concentration in PLLA scaffolds. Thus, PLGA nanofibers with 23 wt% of DNPs and PLLA nanofibers with 5 and particularly 15 wt.% of HAp seem to be promising for bone tissue engineering.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    EI - Biotechnology and bionics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP108%2F12%2FG108" target="_blank" >GBP108/12/G108: Preparation, modification and characterization of materials by radiation</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2014. 6th International conference proceedings

  • ISBN

    978-80-87294-53-6

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    502-507

  • Publisher name

    TANGER

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Nov 5, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000350636300086