All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nanostructures grown by MOVPE InAs/InGaAs/Ga(Sb)As quantum dot and GaN/InGaN quantum well structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F16%3A00463746" target="_blank" >RIV/68378271:_____/16:00463746 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nanostructures grown by MOVPE InAs/InGaAs/Ga(Sb)As quantum dot and GaN/InGaN quantum well structures

  • Original language description

    This review talk summarizes some of results achieved during last years of our quantum dot(QD) research. We show that the QD shape (aspect ratio and elongation) significantly influence the QD photoluminescence (PL) spectrum. Magnetophotoluminescence (MPL) cannbe used for determination of the anisotropy of QDs. While the calculated shifts in magnetic field of the energies of higher radiative transitions are found to be sensitive to the lateral elongation, the shift of the lowest transition is determined mainly by the exciton effective mass. This can be used for determining the effective mass and the elongation fairly reliably from the MPL spectra displaying at least two resolved bands. We found the ways to control the QD elongation for vertically correlated InAs/GaAs QDs and consequently the energy difference between PL transitions by adjusting properly the spacer layer thickness. The main goal was to redshift QD PL emission to telecommunication wavelengths of MOVPE prepared InAs/GaAs QDs using InGaAs or GaAsSb strain reducing layer (SRL).The simulation of electron structure in InAs QDs covered by GaAsSb SRL and our experimental results reveal the importance of increasing QD size for obtaining a longer wavelength PL from the type I heterostructure. The type II structure covered by GaAsSb SRL with Sb content near 30 % enabled us to achieve extremely long emission wavelength at 1.8 μm. The high amount of antimony in the SRL causes the preservation of QD size. Increased QD size prolongs the PL wavelength. The type II structures with ground state electrons confined in InAs QDs and ground state holes in GaAsSb SRL have a strong potential in detector and solar cell applicationsnas is demonstrated by photocurrent measurement.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů