All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2 N b1/2)O3 and its solid solutions with PbTi O3

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F17%3A00473841" target="_blank" >RIV/68378271:_____/17:00473841 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1103/PhysRevB.95.014207" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.95.014207</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.95.014207" target="_blank" >10.1103/PhysRevB.95.014207</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2 N b1/2)O3 and its solid solutions with PbTi O3

  • Original language description

    Antiferromagnets (AFMs) are presently considered as promising materials for applications in spintronics and random access memories due to the robustness of information stored in the AFM state against perturbing magnetic fields. In this respect, AFM multiferroics may be attractive alternatives for conventional AFMs as the coupling of magnetism with ferroelectricity (magnetoelectric effect) offers an elegant possibility of electric-field control and switching of AFM domains. Here we report the results of comprehensive experimental and theoretical investigations of the quadratic magnetoelectric (ME) effect in single crystals and highly resistive ceramics of Pb(Fe1/2Nb1/2)O3 (PFN) and (1-x)Pb(Fe1/2Nb1/2)O3-xPbTiO3(PFN-xPT). We are interested primarily in the temperature range of the multiferroic phase, T<150K, where the ME coupling coefficient is extremely large (as compared to the well-known multiferroic BiFeO3) and shows sign reversal at the paramagnetic-to-antiferromagnetic phase transition. Moreover, we observe strong ME response nonlinearity in the AFM phase in the magnetic fields of only a few kOe. To describe the temperature and magnetic field dependencies of the above unusual features of the ME effect in PFN and PFN-xPT, we use a simple phenomenological Landau approach which explains experimental data surprisingly well. Our ME measurements demonstrate that the electric field of only 20-25 kV/cm is able to switch the AFM domains and align them with ferroelectric ones even in PFN ceramic samples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review. B

  • ISSN

    1098-0121

  • e-ISSN

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85012194067