All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modeling the motion of ferroelectric domain walls with the classical Stefan problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00524861" target="_blank" >RIV/68378271:_____/20:00524861 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevApplied.13.014006" target="_blank" >https://doi.org/10.1103/PhysRevApplied.13.014006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevApplied.13.014006" target="_blank" >10.1103/PhysRevApplied.13.014006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modeling the motion of ferroelectric domain walls with the classical Stefan problem

  • Original language description

    With advances in nanotechnology, ferroelectric switching by individual domain walls (DWs) has become a subject of broad interest. Conventional models consider DW motion in a fixed homogeneous or inhomogeneous electric field. However, it is clear that the electric field commonly evolves in time due to the redistribution of bound charges and screening free charges on the ferroelectric surface, particularly due to surface conductance. Taking this effect into account remains a serious challenge. Here we propose a simple concept to describe simultaneously the evolution of the electric field and the DWmotion in a ferroelectric sample. The approach is based on a full analogy between charge transport during ferroelectric switching and heat transport in a moving melting front: the classical Stefan problem. The analogy helps in the establishment of control of DW motion in thin films.n

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000760" target="_blank" >EF16_019/0000760: Solid State Physics for 21st century</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review Applied

  • ISSN

    2331-7019

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000505999200002

  • EID of the result in the Scopus database

    2-s2.0-85078349374