High rate deposition of photoactive TiO2 films by hot hollow cathode
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00524998" target="_blank" >RIV/68378271:_____/20:00524998 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.surfcoat.2019.125256" target="_blank" >https://doi.org/10.1016/j.surfcoat.2019.125256</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2019.125256" target="_blank" >10.1016/j.surfcoat.2019.125256</a>
Alternative languages
Result language
angličtina
Original language name
High rate deposition of photoactive TiO2 films by hot hollow cathode
Original language description
In this paper we present a plasma deposition technique that allows the reactive deposition of oxide layers with extremely high deposition rate. The new approach combines reactive sputtering by DC hollow cathode discharge with thermal evaporation from the hot surface of the hollow cathode. As an example of successful fast deposition, photoactive films of titanium dioxide (TiO2) with various thicknesses were deposited using this technique. The uncooled titanium nozzle served as a hot hollow cathode and simultaneously as an inert gas (Ar) inlet. The reactive gas (O2) was introduced into the vacuum chamber through a separate inlet. During deposition, the temperature of the titanium hollow cathode reached up to 1600 °C, depending on the discharge parameters. This made it possible to combine the ion sputtering of hot titanium cathode with its thermal surface evaporation, which significantly increased the TiO2 deposition rate. The highest achieved deposition rate was 567 nm/min (34 μm/h), which (with respect to the geometry of this process) corresponds to total volume of the deposited TiO2 material 1.2 mm3/min per 1 kW of absorbed power. Despite extremely high thermal flux to the substrate, TiO2 films were successfully deposited even on temperature-sensitive PET foil. The as-deposited and post-annealed TiO2 films prepared on fluorine doped tin oxide (FTO) substrates and glass were subject to further analyses including X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and photoelectrochemical (PEC) measurements. Whereas the as-deposited TiO2 films had an amorphous (or nearly amorphous) structure, which exhibited only weak photoactivity, after annealing their PEC activity increased by an order of magnitude.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Volume of the periodical
383
Issue of the periodical within the volume
Feb
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000509617000018
EID of the result in the Scopus database
2-s2.0-85076290354