Deep learning based algorithms in astroparticle physics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00548785" target="_blank" >RIV/68378271:_____/20:00548785 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012112/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012112/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/1525/1/012112" target="_blank" >10.1088/1742-6596/1525/1/012112</a>
Alternative languages
Result language
angličtina
Original language name
Deep learning based algorithms in astroparticle physics
Original language description
In recent years, great progress has been made in the fields of machine translation, image classification and speech recognition by using deep neural networks and associated techniques (deep learning). Recently, the astroparticle physics community successfully adapted supervised learning algorithms for a wide range of tasks including background rejection, object reconstruction, track segmentation and the denoising of signals. Additionally, the first approaches towards fast simulations and simulation refinement indicate the huge potential of unsupervised learning for astroparticle physics. We summarize the latest results, discuss the algorithms and challenges and further illustrate the opportunities for the astrophysics community offered by deep learning based algorithms.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
—
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Journal of Physics: Conference Series
ISBN
—
ISSN
1742-6588
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
IOP Publishing Ltd.
Place of publication
Bristol
Event location
Saas-Fee
Event date
Mar 11, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000618973400112