Application of Convolutional Neural Networks in Neutrino Physics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335963" target="_blank" >RIV/68407700:21340/19:00335963 - isvavai.cz</a>
Result on the web
<a href="http://gams.fjfi.cvut.cz/spms2019" target="_blank" >http://gams.fjfi.cvut.cz/spms2019</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of Convolutional Neural Networks in Neutrino Physics
Original language description
The application of deep learning methods has in past years enabled new discoveries in many fields of study and neutrino physics is no exception. As a deep learning algorithm, convolutional neural networks (CNNs) show outstanding results in the domain of computer vision. Thus, they are being used as a particle classifier using visual image data reconstructed from various neutrino experiments. In this paper, we present a study of concepts of artificial neural networks (ANNs) as well as CNNs. Furthermore, we present the classification results of Monte Carlo simulated images from neutrino experiment DUNE.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of SPMS 2019 - Stochastic and Physical Monitoring Systems
ISBN
978-80-01-06659-1
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
85-91
Publisher name
Česká technika - nakladatelství ČVUT
Place of publication
Praha
Event location
Dobřichovice
Event date
Jun 20, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—