Prospects for the use of photosensor timing information with machine learning techniques in background rejection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F21%3A00551835" target="_blank" >RIV/68378271:_____/21:00551835 - isvavai.cz</a>
Result on the web
<a href="https://pos.sissa.it/358/798/pdf" target="_blank" >https://pos.sissa.it/358/798/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22323/1.358.0798" target="_blank" >10.22323/1.358.0798</a>
Alternative languages
Result language
angličtina
Original language name
Prospects for the use of photosensor timing information with machine learning techniques in background rejection
Original language description
Recent developments in machine learning (ML) techniques present a promising new analysis method for high-speed imaging in astroparticle physics experiments, for example with imaging atmospheric Cherenkov telescopes (IACTs). In particular, the use of timing information with new machine learning techniques provides a novel method for event classification. Previous work in this field has utilised images of the integrated charge from IACT camera photomultipliers, but the majority of current and upcoming IACT cameras have the capacity to read out the entire photosensor waveform following a trigger. As the arrival times of Cherenkov photons from extensive air showers (EAS) at the camera plane are dependent upon the altitude of their emission, these waveforms contain information useful for IACT event classification.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
—
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Science
ISBN
—
ISSN
1824-8039
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
Sissa Medilab srl
Place of publication
Trieste
Event location
Madison, WI
Event date
Jul 24, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—