All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CTLearn: deep learning for gamma-ray astronomy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F21%3A00552169" target="_blank" >RIV/68378271:_____/21:00552169 - isvavai.cz</a>

  • Result on the web

    <a href="https://pos.sissa.it/358/752/pdf" target="_blank" >https://pos.sissa.it/358/752/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22323/1.358.0752" target="_blank" >10.22323/1.358.0752</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CTLearn: deep learning for gamma-ray astronomy

  • Original language description

    CTLearn is a new Python package under development that uses the deep learning technique to analyze data from imaging atmospheric Cherenkov telescope (IACT) arrays. IACTs use the Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays, to form an image of the longitudinal development of the air shower on the camera plane. The spatial, temporal, and calorimetric information of the originating high-energy particle is then recorded electronically.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of Science

  • ISBN

  • ISSN

    1824-8039

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    Sissa Medilab srl

  • Place of publication

    Trieste

  • Event location

    Madison, WI

  • Event date

    Jul 24, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article