Design principles of hybrid nanomaterials for radiotherapy enhanced by photodynamic therapy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00560066" target="_blank" >RIV/68378271:_____/22:00560066 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0333142" target="_blank" >https://hdl.handle.net/11104/0333142</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijms23158736" target="_blank" >10.3390/ijms23158736</a>
Alternative languages
Result language
angličtina
Original language name
Design principles of hybrid nanomaterials for radiotherapy enhanced by photodynamic therapy
Original language description
Radiation (RT) remains the most frequently used treatment against cancer. The main limitation of RT is its lack of specificity for cancer tissues and the limited maximum radiation dose that can be safely delivered without damaging the surrounding healthy tissues. A step forward in the development of better RT is achieved by coupling it with other treatments, such as photodynamic therapy (PDT). PDT is an anti-cancer therapy that relies on the light activation of non-toxic molecules—called photosensitizers—to generate ROS such as singlet oxygen. By conjugating photosensitizers to dense nanoscintillators in hybrid architectures, the PDT could be activated during RT, leading to cell death through an additional pathway with respect to the one activated by RT alone. Therefore, combining RT and PDT can lead to a synergistic enhancement of the overall efficacy of RT. However, the involvement of hybrids in combination with ionizing radiation is not trivial: the comprehension of the relationship among RT, scintillation emission of the nanoscintillator, and therapeutic effects of the locally excited photosensitizers is desirable to optimize the design of the hybrid nanoparticles for improved effects in radio-oncology. Here, we discuss the working principles of the PDT-activated RT methods, pointing out the guidelines for the development of effective coadjutants to be tested in clinics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Molecular Sciences
ISSN
1422-0067
e-ISSN
1422-0067
Volume of the periodical
23
Issue of the periodical within the volume
15
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
8736
UT code for WoS article
000838932700001
EID of the result in the Scopus database
2-s2.0-85136340308