Averaging Operators on l^{p_n} and L^p(x)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F02%3A00096013" target="_blank" >RIV/68407700:21110/02:00096013 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Averaging Operators on l^{p_n} and L^p(x)
Original language description
We consider the generalized Lebesgue space $L^{p(x)}$ and its discrete analogue $l^{{p_n}}$, each given the appropriate Luxemburg norm. Let $T_k$ be the averaging operator given by $$ (T_ka)_n=frac{1}{k}(a_n+a_{n+1}+ldots +a_{n+k-1}), a={a_n}in l^{{p_n}} $$ We show that the $T_k$ are uniformly bounded from $l^{{p_n}}$ into $l^{{p_n}}$ under certain assumptions on ${p_n}$ and find a counter-example to show that $T_k$ need not be bounded if these assumptions are not satisfied.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Inequalities and Applications
ISSN
1331-4343
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
2
Country of publishing house
HR - CROATIA
Number of pages
12
Pages from-to
—
UT code for WoS article
000175630800009
EID of the result in the Scopus database
—