All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Averaging Operators on l^{p_n} and L^p(x)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F02%3A00096013" target="_blank" >RIV/68407700:21110/02:00096013 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Averaging Operators on l^{p_n} and L^p(x)

  • Original language description

    We consider the generalized Lebesgue space $L^{p(x)}$ and its discrete analogue $l^{{p_n}}$, each given the appropriate Luxemburg norm. Let $T_k$ be the averaging operator given by $$ (T_ka)_n=frac{1}{k}(a_n+a_{n+1}+ldots +a_{n+k-1}), a={a_n}in l^{{p_n}} $$ We show that the $T_k$ are uniformly bounded from $l^{{p_n}}$ into $l^{{p_n}}$ under certain assumptions on ${p_n}$ and find a counter-example to show that $T_k$ need not be bounded if these assumptions are not satisfied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Inequalities and Applications

  • ISSN

    1331-4343

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    HR - CROATIA

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000175630800009

  • EID of the result in the Scopus database