Localization of Inelastic Deformation and Partition of Unity Method - One Dimensional Case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F03%3A01087803" target="_blank" >RIV/68407700:21110/03:01087803 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Localization of Inelastic Deformation and Partition of Unity Method - One Dimensional Case
Original language description
The aim of the present work is to provide a simple, unified and self-contained treatment of formulation and numerical approximation of a localization problem. The strong discontinuity approach is used for the modelling of localized state of deformation while the discretization of this problem is formulated in the framework of the Partition of Unity method. An illustrative one-dimensional example is presented to provide a comparison of analytical solution with the numerical approximation and to prepare theoretical grounds for higher-dimensional problems
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
JM - Structural engineering
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA106%2F02%2F0678" target="_blank" >GA106/02/0678: Micromechanical analysis and modeling of compressive fracture in fiber reinforced cementitious composites</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
CTU Reports 1/2003: Contributions to Computational and Experimental Investigation of Engineering Materials and Structures
ISBN
80-01-02734-1
Number of pages of the result
22
Pages from-to
139-160
Number of pages of the book
—
Publisher name
Czech Technical University in Prague
Place of publication
Praha
UT code for WoS chapter
—