Strong Solutions to Non-Stationary Channel Flows of Heat-Conducting Viscous Incompressible Fluids with Dissipative Heating
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F11%3A00182464" target="_blank" >RIV/68407700:21110/11:00182464 - isvavai.cz</a>
Result on the web
<a href="http://www.springerlink.com/content/qu5w287n2364m0v6/" target="_blank" >http://www.springerlink.com/content/qu5w287n2364m0v6/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10440-011-9640-8" target="_blank" >10.1007/s10440-011-9640-8</a>
Alternative languages
Result language
angličtina
Original language name
Strong Solutions to Non-Stationary Channel Flows of Heat-Conducting Viscous Incompressible Fluids with Dissipative Heating
Original language description
We study an initial-boundary-value problem for time-dependent flows of heat-conducting viscous incompressible fluids in channel-like domains on a time interval $(0,T)$. For the parabolic system with strong nonlinearities and including the artificial (theso called "do nothing") boundary conditions, we prove the local in time existence, global uniqueness and smoothness of the solution on a time interval $(0,T*)$, where $0< T* leq T$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Applicandae Mathematicae
ISSN
0167-8019
e-ISSN
—
Volume of the periodical
116
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
237-254
UT code for WoS article
000300084300001
EID of the result in the Scopus database
—