Approximation of a solution to the Euler equation by solutions of the Navier?Stokes equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00389760" target="_blank" >RIV/67985840:_____/13:00389760 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-012-0125-y" target="_blank" >http://dx.doi.org/10.1007/s00021-012-0125-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-012-0125-y" target="_blank" >10.1007/s00021-012-0125-y</a>
Alternative languages
Result language
angličtina
Original language name
Approximation of a solution to the Euler equation by solutions of the Navier?Stokes equation
Original language description
We show that a smooth solution u 0 of the Euler boundary value problem on a time interval (0, T 0) can be approximated by a family of solutions of the Navier?Stokes problem in a topology of weak or strong solutions on the same time interval (0, T 0). Thesolutions of the Navier?Stokes problem satisfy Navier?s boundary condition, which must be ?naturally inhomogeneous if we deal with the strong solutions. We provide information on the rate of convergence of the solutions of the Navier?Stokes problem to the solution of the Euler problem for ? 0. We also discuss possibilities when Navier?s boundary condition becomes homogeneous.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
179-196
UT code for WoS article
000315093300010
EID of the result in the Scopus database
—