All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation of a solution to the Euler equation by solutions of the Navier?Stokes equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00389760" target="_blank" >RIV/67985840:_____/13:00389760 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00021-012-0125-y" target="_blank" >http://dx.doi.org/10.1007/s00021-012-0125-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-012-0125-y" target="_blank" >10.1007/s00021-012-0125-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation of a solution to the Euler equation by solutions of the Navier?Stokes equation

  • Original language description

    We show that a smooth solution u 0 of the Euler boundary value problem on a time interval (0, T 0) can be approximated by a family of solutions of the Navier?Stokes problem in a topology of weak or strong solutions on the same time interval (0, T 0). Thesolutions of the Navier?Stokes problem satisfy Navier?s boundary condition, which must be ?naturally inhomogeneous if we deal with the strong solutions. We provide information on the rate of convergence of the solutions of the Navier?Stokes problem to the solution of the Euler problem for ? 0. We also discuss possibilities when Navier?s boundary condition becomes homogeneous.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    179-196

  • UT code for WoS article

    000315093300010

  • EID of the result in the Scopus database