All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Local in Time Strong Solvability of the Non - Steady Navier - Stokes Equations with Navier's Boundary Condition and the Question of the Inviscid Limit

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F10%3A00171268" target="_blank" >RIV/68407700:21220/10:00171268 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Local in Time Strong Solvability of the Non - Steady Navier - Stokes Equations with Navier's Boundary Condition and the Question of the Inviscid Limit

  • Original language description

    In this Note, we prove the existence of strong solutions to the Navier-Stokes equations for incompressible viscous fluids in a general regular bounded domain of R3 on a "short" time interval (0, T_0), independent of the viscosity and of the friction between the fluid and the boundary. The solutions to the Navier-Stokes problem satisfy the inhomogeneous Navier's boundary condition and they reveal a remarkable structure of approximation of the solution to the Euler problem, which enables us to solve completely the question of the inviscid limit of the family of obtained solutions on the time interval (0, T_0).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Comptes Rendus Mathematique

  • ISSN

    1631-073X

  • e-ISSN

  • Volume of the periodical

    348

  • Issue of the periodical within the volume

    19-20

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

  • UT code for WoS article

    000284983000010

  • EID of the result in the Scopus database