All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Navier-Stokes Approximation of the 3D Euler Equation with the Zero Flux on the Boundary

Result description

Under assumptions on smoothness of the initial velocity and the external body force, we prove that threre exists T_0>0, /nu_0>0 and a unique continuous family of strong solutions u_{/nu} (0

Keywords

Euler equationsNavier-Stokes equations

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Navier-Stokes Approximation of the 3D Euler Equation with the Zero Flux on the Boundary

  • Original language description

    Under assumptions on smoothness of the initial velocity and the external body force, we prove that threre exists T_0>0, /nu_0>0 and a unique continuous family of strong solutions u_{/nu} (0

  • Czech name

    Navierova-Stokesova aproximace 3D Eulerovy rovnice s nulovým tokem na hranici

  • Czech description

    Za předpokladu hladkosti počáteční rychlosti a vnější objemové síly dokážeme, že existuje T_0>0, /nu_0>0 a jediná spojitá větev silných řešení u_{/nu} (0

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

  • UT code for WoS article

    000262838600004

  • EID of the result in the Scopus database