On a nu-continuous famaly of strong solutions to the Euler or Navier-Stokes equations with the Navier-type boundary condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00343551" target="_blank" >RIV/67985840:_____/10:00343551 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a nu-continuous famaly of strong solutions to the Euler or Navier-Stokes equations with the Navier-type boundary condition
Original language description
Under assumptions on smoothness of the initial velocity and the external body force, we prove that there exists T-0 > 0, nu* > 0 and a unique family of strong solutions u(nu) of the Euler or Navier-Stokes initial-boundary value problem on the time interval ( 0, T-0), depending continuously on the viscosity coefficient nu for 0 <= nu < nu*. The solutions of the Navier-Stokes problem satisfy a Navier-type boundary condition. We give the information on the rate of convergence of the solutions of the Navier-Stokes problem to the solution of the Euler problem for nu -> 0+.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190905" target="_blank" >IAA100190905: Dynamical properties of the Navier-Stokes and related equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems
ISSN
1078-0947
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
—
UT code for WoS article
000276391500005
EID of the result in the Scopus database
—