ON BOUSSINESQ EQUATIONS WITH NEUMANN-TYPE BOUNDARY CONDITIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00215943" target="_blank" >RIV/68407700:21110/14:00215943 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ON BOUSSINESQ EQUATIONS WITH NEUMANN-TYPE BOUNDARY CONDITIONS
Original language description
We study Boussinesq type systems describing time-dependent flows of heat-conducting viscous incompressible fluids in three-dimensional channels. The fluid flow is governed by coupled balance equations for linear momentum, mass and internal energy. We prove a local existence theorem for the coupled parabolic system with a combination of Dirichlet and artificial boundary conditions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Conference TOPICAL PROBLEMS OF FLUID MECHANICS 2014
ISBN
978-80-87012-51-2
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
5-8
Publisher name
Institute of Thermomechanics, AS CR, v.v.i.
Place of publication
Prague
Event location
Praha
Event date
Feb 19, 2014
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—