Solutions to the Navier--Stokes Equations with Mixed Boundary Conditions in Two-Dimensional Bounded Domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00225681" target="_blank" >RIV/68407700:21110/16:00225681 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201400046" target="_blank" >http://dx.doi.org/10.1002/mana.201400046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201400046" target="_blank" >10.1002/mana.201400046</a>
Alternative languages
Result language
angličtina
Original language name
Solutions to the Navier--Stokes Equations with Mixed Boundary Conditions in Two-Dimensional Bounded Domains
Original language description
In this paper we consider the system of the non--steady Navier--Stokes equations with mixed boundary conditions. We study the existence and uniqueness of a solution of this system. We define Banach spaces $X$ and $Y$, respectively, to be the space of ``possible'' solutions of this problem and the space of its data. We define the operator $on:Xto Y$ and formulate our problem in terms of operator equations. Let $bfuin X$ and $ogpu: Xto Y$ be the Frechet derivative of $on$ at $bfu$. We prove that $ogpu$ is one-to-one and onto $Y$. Consequently, suppose that the system is solvable with some given data (the initial velocity and the right hand side). Then there exists a unique solution of this system for data which are small perturbations of the previous ones. Next result proved in the Appendix of this paper is $W^{2,2}$- regularity of solutions of steady Stokes system with mixed boundary condition for sufficiently smooth data.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
289
Issue of the periodical within the volume
2-3
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
194-212
UT code for WoS article
000369957600004
EID of the result in the Scopus database
2-s2.0-84957838320