All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solutions to the Navier--Stokes Equations with Mixed Boundary Conditions in Two-Dimensional Bounded Domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00225681" target="_blank" >RIV/68407700:21110/16:00225681 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mana.201400046" target="_blank" >http://dx.doi.org/10.1002/mana.201400046</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201400046" target="_blank" >10.1002/mana.201400046</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solutions to the Navier--Stokes Equations with Mixed Boundary Conditions in Two-Dimensional Bounded Domains

  • Original language description

    In this paper we consider the system of the non--steady Navier--Stokes equations with mixed boundary conditions. We study the existence and uniqueness of a solution of this system. We define Banach spaces $X$ and $Y$, respectively, to be the space of ``possible'' solutions of this problem and the space of its data. We define the operator $on:Xto Y$ and formulate our problem in terms of operator equations. Let $bfuin X$ and $ogpu: Xto Y$ be the Frechet derivative of $on$ at $bfu$. We prove that $ogpu$ is one-to-one and onto $Y$. Consequently, suppose that the system is solvable with some given data (the initial velocity and the right hand side). Then there exists a unique solution of this system for data which are small perturbations of the previous ones. Next result proved in the Appendix of this paper is $W^{2,2}$- regularity of solutions of steady Stokes system with mixed boundary condition for sufficiently smooth data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    289

  • Issue of the periodical within the volume

    2-3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    19

  • Pages from-to

    194-212

  • UT code for WoS article

    000369957600004

  • EID of the result in the Scopus database

    2-s2.0-84957838320