Neural Networks in Back Analysis of Tunnels
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00306873" target="_blank" >RIV/68407700:21110/17:00306873 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-981-10-3247-9_4" target="_blank" >http://link.springer.com/chapter/10.1007/978-981-10-3247-9_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-3247-9_4" target="_blank" >10.1007/978-981-10-3247-9_4</a>
Alternative languages
Result language
angličtina
Original language name
Neural Networks in Back Analysis of Tunnels
Original language description
To ensure the best agreement of the numerical model behaviour and the reality the back analysis can be used. At present, the engineers prefer relatively simple back inverse methods, however it does not necessarily lead to the desired results. Between the current methods to perform back analysis of soil parameters the method based on the artificial neural networks is the one which is used in the Czech Republic. After a short introduction the principles of the prediction of the tunnel deformation using multi-layer neural network with back propagation are described. At the end of the paper the practical application of the neural networks in the back analysis is shown.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
<a href="/en/project/TE01020168" target="_blank" >TE01020168: Centre for Effective and Sustainable Transport Infrastructure (CESTI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Durability of Critical Infrastructure, Monitoring and Testing Proceedings of the ICDCF 2016
ISBN
978-981-10-3246-2
ISSN
2195-4356
e-ISSN
—
Number of pages
8
Pages from-to
27-34
Publisher name
Springer Nature Singapore Pte Ltd.
Place of publication
—
Event location
Šatov
Event date
Dec 6, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000419058500004