All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High temperature durability of fiber reinforced high alumina cement composites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00318834" target="_blank" >RIV/68407700:21110/18:00318834 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0950061818300849" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950061818300849</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.conbuildmat.2018.01.076" target="_blank" >10.1016/j.conbuildmat.2018.01.076</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High temperature durability of fiber reinforced high alumina cement composites

  • Original language description

    The effect of high temperature exposure on the durability of fiber-reinforced composite materials based on high alumina cement is studied. A combination of X-ray diffraction- and thermal analyses of hydrated phases shows a simultaneous presence of all principal hydrates (CAH10, C2AH8, C3AH6, AH3) in significant amounts during the whole 2–28 days hydration period. The application of basalt aggregates and basalt fibers is found to improve significantly the high-temperature durability, in a comparison with the cement paste. The residual values of compressive and bending strength of the most successful mix with the combination of longer and shorter basalt fibers in a 90:10 ratio are 50% and 34%, respectively, after 1000 °C exposure. The fiber reinforced composite material with the most favorable mechanical properties exhibits also the highest resistance to water and water vapor transport and the lowest water vapor adsorption after 1000 °C pre-heating, which correlates well with its lowest amount of pores bigger than 100 nm. The thermal conductivity and specific heat capacity of all analyzed composites show a significant increase with the increasing moisture content; the differences between the values in dry and water saturated state are up to 100% and 65%, respectively. The thermal strain of all studied materials is almost linear within the whole 20–1000 °C range, with the basalt fibers being able to decrease it by up to 7% at 1000 °C.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    <a href="/en/project/GBP105%2F12%2FG059" target="_blank" >GBP105/12/G059: Cumulative time dependent processes in building materials and structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Construction and Building Materials

  • ISSN

    0950-0618

  • e-ISSN

    1879-0526

  • Volume of the periodical

    162

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    881-891

  • UT code for WoS article

    000425564400083

  • EID of the result in the Scopus database

    2-s2.0-85040690356