Properties of wheat straw ash geopolymer for construction use
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00332112" target="_blank" >RIV/68407700:21110/19:00332112 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Properties of wheat straw ash geopolymer for construction use
Original language description
Today the use of biomass combustion for the generation electric power is enormously growing. It is due to the worldwide interest in the environmental sustainability and production of renewable energy. With increasing amount of biomass combusted for energy supply, huge quantity of biomass ash is generated worldwide. One of the open questions related to extensive biomass combustion is what we are going to do with this huge amount of biomass ash. Considering both the environmental and economic issues, biomass ash must be safely treated, and preferably reused as a secondary raw material in production process. As construction industry suffers from the lack of natural resources for production of building materials, the use of biomass ash in their composition could be effective solution of its disposal. At the presented study we focused at the valorisation of wheat straw ash as filler in new type of eco-efficient alkali-activated geopolymer. In intensive experimental campaign, two types of geopolymers were studied. One of the geopolymers was composed of coal fly ash, alkali activator, and silica sand. This material was used as a reference one. In composition of the second one, fly ash was partially substituted with wheat straw ash. The wheat straw ash and coal fly ash were physical and chemically analysed using particle size analyser, helium pycnometry, XRF, SEM and EDS. For the hardened geopolymers, set of structural, mechanical, hygric, and thermal properties was determined. The geopolymer produced with wheat straw ash admixture exhibited increased mechanical strength, lower porosity and thus reduced water transport parameters compared to reference material. Based on the obtained data it was concluded, the newly developed geopolymer represents eco-efficient low cost alternative to cement-based products.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Result continuities
Project
<a href="/en/project/GA17-02815S" target="_blank" >GA17-02815S: Research and development of high performance composites containing biomass ash</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
19th International Multidisciplinary Scientific Geoconference SGEM 2019
ISBN
978-619-7408-89-8
ISSN
1314-2704
e-ISSN
—
Number of pages
8
Pages from-to
239-246
Publisher name
STEF92 Technology Ltd.
Place of publication
Sofia
Event location
Albena
Event date
Jun 30, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—