All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Temperature distribution of trapezoidal sheeting in fire

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00333385" target="_blank" >RIV/68407700:21110/19:00333385 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Temperature distribution of trapezoidal sheeting in fire

  • Original language description

    Trapezoidal sheeting has been used for stabilizing steel members for a long time. In recent years several documents which include the comprehensive theoretical background and design guidelines for practice have been published. ECCS published the design recommendations including an example of considerable cost savings in steel constructions when sheeting is used for stabilization. However, these documents did not cover the fire limit state. The study presented in this paper is aimed at stabilization of steel members through the trapezoidal sheeting in fire. The papers describes four full-scale fire tests carried out on a horizontal furnace for fire resistance testing. The test specimens were assembled from a fire protected steel beam and trapezoidal sheeting. The profile of the steel beam was a HEA 160 (S355) in two of the tests, and a RHS 150x150x8 (S420) in the remaining tests. Two different profiles of the trapezoidal sheeting were used during the tests. Experimental testing was conducted to determine the temperature fields in trapezoidal sheeting and in the supporting structural steel sections as well as in the connectors with special attention given to the temperatures at the joint above the steel beam section. The results of the tests show that at the failure of the specimens the screw temperatures were between 720°C and 780°C. The screw temperatures were lower than the temperature of trapezoidal sheets but higher than the temperatures of the top flanges of fire protected steel beam. The results of the tests provided experimental data for the critical variables related to building stabilization in fire through the cladding systems which is under investigation of RFCS project STABFI.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20103 - Architecture engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Special Issue: Proceedings of Nordic Steel 2019

  • ISBN

  • ISSN

    2509-7075

  • e-ISSN

    2509-7075

  • Number of pages

    6

  • Pages from-to

    665-670

  • Publisher name

    Ernst & Sohn

  • Place of publication

    Berlin

  • Event location

    Copenhagen

  • Event date

    Sep 18, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article