All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental study on temperature distribution of sandwich panel joints in fire

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00333652" target="_blank" >RIV/68407700:21110/19:00333652 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental study on temperature distribution of sandwich panel joints in fire

  • Original language description

    Previous research have demonstrated that significant cost savings can be achieved, if cladding panels forming the building envelope are used to provide stability. There is research information and design guidance available for normal temperature design. However, the information available for fire conditions is very limited and it is not known if the panels are able to stabilize steel frame members also at elevated temperatures. The stiffness and resistance of joints, cladding panels and connectors are required for the assessment of interaction between cladding and frame in fire. Temperatures of those components are in important role when evaluating the stabilization effect. This paper presents an experimental research conducted to determine the temperature fields in sandwich panels, supporting structural steel members and screw connectors. Eight full-scale fire tests were carried out where the structural steel sections supporting sandwich panels were exposed to ISO 834 fire attack on three sides. The test specimen consisted of a fire protected steel beam and load-bearing sandwich panels with both mineral wool and polyisocyanurate (PIR) core. Two different steel beam sections were used in the tests: HEA 160 (S355) and RHS 150x150x8 (S420). This paper introduces the experimental research and the main observations related to the temperatures. The results show that at failure of the specimens the measured screw temperatures were very different in HEA and RHS tests. The temperatures in HEA tests were much higher than in RHS tests the maximum difference in screw point temperatures being over 400°C. In all the specimens, screw head temperatures were very low throughout the tests, well below 100°C. The tests were part of ongoing RFCS project STABFI.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Special Issue: Proceedings of Nordic Steel 2019

  • ISBN

  • ISSN

    2509-7075

  • e-ISSN

    2509-7075

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    Ernst & Sohn

  • Place of publication

    Berlin

  • Event location

    Copenhagen

  • Event date

    Sep 18, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article