Mapping Borel sets onto balls and self-similar sets by Lipschitz and nearly Lipschitz maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00349803" target="_blank" >RIV/68407700:21110/20:00349803 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/imrn/rny008" target="_blank" >https://doi.org/10.1093/imrn/rny008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rny008" target="_blank" >10.1093/imrn/rny008</a>
Alternative languages
Result language
angličtina
Original language name
Mapping Borel sets onto balls and self-similar sets by Lipschitz and nearly Lipschitz maps
Original language description
Borel set in a Euclidean space maps onto [0,1]^n by a nearly Lipschitz map if and only if it cannot be covered by countably many sets of Hausdorff dimension strictly below n. The argument extends to analytic metric spaces satisfying the mild condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Volume of the periodical
2020
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
698-721
UT code for WoS article
000522852700003
EID of the result in the Scopus database
—