All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mapping Borel sets onto balls and self-similar sets by Lipschitz and nearly Lipschitz maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00349803" target="_blank" >RIV/68407700:21110/20:00349803 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1093/imrn/rny008" target="_blank" >https://doi.org/10.1093/imrn/rny008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rny008" target="_blank" >10.1093/imrn/rny008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mapping Borel sets onto balls and self-similar sets by Lipschitz and nearly Lipschitz maps

  • Original language description

    Borel set in a Euclidean space maps onto [0,1]^n by a nearly Lipschitz map if and only if it cannot be covered by countably many sets of Hausdorff dimension strictly below n. The argument extends to analytic metric spaces satisfying the mild condition.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    24

  • Pages from-to

    698-721

  • UT code for WoS article

    000522852700003

  • EID of the result in the Scopus database