Mapping analytic sets onto cubes by little Lipschitz functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F19%3A43894324" target="_blank" >RIV/44555601:13440/19:43894324 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21110/19:00339119
Result on the web
<a href="https://link.springer.com/article/10.1007/s40879-018-0288-z?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20181001" target="_blank" >https://link.springer.com/article/10.1007/s40879-018-0288-z?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20181001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40879-018-0288-z" target="_blank" >10.1007/s40879-018-0288-z</a>
Alternative languages
Result language
angličtina
Original language name
Mapping analytic sets onto cubes by little Lipschitz functions
Original language description
If a compact (or, more generally, analytic) metric space has packing dimension greater than n, then it can be mapped onto an n-dimensional cube by a little Lipschitz function. An analytic metric space X contains a compact subset S of big packing dimension that embeds into an ultrametric space by a Lipschitz map. A little Lipschitz function on a closed subset admits a little Lipschitz extension.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Mathematics
ISSN
2199-675X
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
91-105
UT code for WoS article
000464871800005
EID of the result in the Scopus database
2-s2.0-85062291252