Using Virtual and Augmented Reality with GIS Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00375897" target="_blank" >RIV/68407700:21110/24:00375897 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/ijgi13070241" target="_blank" >https://doi.org/10.3390/ijgi13070241</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijgi13070241" target="_blank" >10.3390/ijgi13070241</a>
Alternative languages
Result language
angličtina
Original language name
Using Virtual and Augmented Reality with GIS Data
Original language description
This study explores how combining virtual reality (VR) and augmented reality (AR) with geographic information systems (GIS) revolutionizes data visualization. It traces the historical development of these technologies and highlights key milestones that paved the way for this study’s objectives. While existing platforms like Esri’s software and Google Earth VR show promise, they lack complete integration for immersive GIS visualization. This gap has led to the need for a dedicated workflow to integrate selected GIS data into a game engine for visualization purposes. This study primarily utilizes QGIS for data preparation and Unreal Engine for immersive visualization. QGIS handles data management, while Unreal Engine offers advanced rendering and interactivity for immersive experiences. To tackle the challenge of handling extensive GIS datasets, this study proposes a workflow involving tiling, digital elevation model generation, and transforming GeoTIFF data into 3D objects. Leveraging QGIS and Three.js streamlines the conversion process for integration into Unreal Engine. The resultant virtual reality application features distinct stations, enabling users to navigate, visualize, compare, and animate GIS data effectively. Each station caters to specific functionalities, ensuring a seamless and informative experience within the VR environment. This study also delves into augmented reality applications, adapting methodologies to address hardware limitations for smoother user experiences. By optimizing textures and implementing augmented reality functionalities through modules Swift, RealityKit, and ARKit, this study extends the immersive GIS experience to iOS devices. In conclusion, this research demonstrates the potential of integrating virtual reality, augmented reality, and GIS, pushing data visualization into new realms. The innovative workflows and applications developed serve as a testament to the evolving landscape of spatial data interpretation and engagement.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21100 - Other engineering and technologies
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ISPRS International Journal of Geo-Information
ISSN
2220-9964
e-ISSN
2220-9964
Volume of the periodical
13
Issue of the periodical within the volume
7
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
—
UT code for WoS article
001277025000001
EID of the result in the Scopus database
2-s2.0-85199509589