Generalized minimizing movements for the varifold Canham-Helfrich flow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00381414" target="_blank" >RIV/68407700:21110/24:00381414 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/acv-2022-0056" target="_blank" >https://doi.org/10.1515/acv-2022-0056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/acv-2022-0056" target="_blank" >10.1515/acv-2022-0056</a>
Alternative languages
Result language
angličtina
Original language name
Generalized minimizing movements for the varifold Canham-Helfrich flow
Original language description
The gradient flow of the Canham-Helfrich functional is tackled via the generalized minimizing movements approach. We prove the existence of solutions in Wasserstein spaces of varifolds, as well as upper and lower diameter bounds. In the more regular setting of multiply covered C-1,C-1 surfaces, we provide a Li-Yau-type estimate for the Canham-Helfrich energy and prove the conservation of multiplicity along the evolution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Calculus of Variations
ISSN
1864-8258
e-ISSN
1864-8266
Volume of the periodical
17
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
727-751
UT code for WoS article
001142293400001
EID of the result in the Scopus database
2-s2.0-85182578756