All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fundamentals of Higher Order Neural Networks for Modeling and Simulation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F12%3A00196111" target="_blank" >RIV/68407700:21220/12:00196111 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.igi-global.com/chapter/fundamentals-higher-order-neural-networks/71797" target="_blank" >http://www.igi-global.com/chapter/fundamentals-higher-order-neural-networks/71797</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4018/978-1-4666-2175-6.ch006" target="_blank" >10.4018/978-1-4666-2175-6.ch006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fundamentals of Higher Order Neural Networks for Modeling and Simulation

  • Original language description

    In this chapter, we provide fundamental principles of higher order neural units (HONUs) and higher order neural networks (HONNs) for modeling and simulation. An essential core of HONNs can be found in higher order weighted combinations or correlations between the input variables and HONU. Except the high quality of nonlinear approximation of static HONUs, the capability of dynamic HONUs for modeling of dynamic systems is shown and compared to conventional recurrent neural networks when a practical learning algorithm is used. Also, the potential of continuous dynamic HONUs to approximate high dynamic-order systems is discussed as adaptable time delays can be implemented. By using some typical examples, this chapter describes how and why higher order combinations or correlations can be effective for modeling of systems.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Artificial Higher Order Neural Networks for Modeling and Simulation

  • ISBN

    978-1-4666-2175-6

  • Number of pages of the result

    31

  • Pages from-to

    103-133

  • Number of pages of the book

    454

  • Publisher name

    IGI Global

  • Place of publication

    Hershey, Pennsylvania

  • UT code for WoS chapter