All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimality of the higher-order neuron unit approximators with omitted inputs for adaptive control of dynamical systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00379215" target="_blank" >RIV/68407700:21220/24:00379215 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimality of the higher-order neuron unit approximators with omitted inputs for adaptive control of dynamical systems

  • Original language description

    This paper evaluates the performance of Higher Order Neuron Unit (HONU) with omitted inputs-based approximators for dynamical systems, focusing on Quadratic Neuron Units (QNUs) and Cubic Neuron Units (CNUs). Despite the reduced feature vector, HONU-based models demonstrate robust approximation capabilities. The optimality, stability, and convergence of the QNU and CNU-based approximators are analyzed and compared. These findings highlight the potential of HONUs for data-driven dynamical system modeling in adaptive control applications.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů