Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F12%3A00203564" target="_blank" >RIV/68407700:21220/12:00203564 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/12:00376643
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2011.08.037" target="_blank" >http://dx.doi.org/10.1016/j.jde.2011.08.037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2011.08.037" target="_blank" >10.1016/j.jde.2011.08.037</a>
Alternative languages
Result language
angličtina
Original language name
Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity
Original language description
Authors consider a system arising by linearization of a model for stationary viscous incompressible flow around a translating and rotating body. An asymptotic profile of the gradient of the velocity is derived. The leading term of the profile involves derivatives of a fundamental solution constructed by R.B. Guenther and E.A. Thomann (2006), for the system in question. In addition, decay estimates of the second derivatives of the velocity are established.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
252
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
459-476
UT code for WoS article
000296304400019
EID of the result in the Scopus database
—