All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental Studies on the Influence of Plasma Treatment of Polyethylene in Carbon Fiber Composites: Mechanical and Morphological Studies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00356570" target="_blank" >RIV/68407700:21220/22:00356570 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/polym14061095" target="_blank" >https://doi.org/10.3390/polym14061095</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym14061095" target="_blank" >10.3390/polym14061095</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental Studies on the Influence of Plasma Treatment of Polyethylene in Carbon Fiber Composites: Mechanical and Morphological Studies

  • Original language description

    This research focused on enhancement of mechanical properties in carbon fiber (CF)-filler-reinforced linear low-density polyethylene (PE) matrix composites. A hand layup method using an oven was used as the fabrication method. Improvement in adhesion was achieved by oxygen plasma treatment to the PE matrix. CF and PE were initially mixed by normal stirring, ultrasonication and mechanical stirring before being filtered and dried for fabrication. Better tensile results were observed with a plasma-treated polyethylene (PEP)/10 wt.% CF combination, with a maximum tensile strength of 21.5 MPa and improvement in the properties of up to 12.57% compared to non-plasma PE with the same CF addition. The addition of carbon fibers at 13 and 15 wt.% resulted in a reduction in the tensile strength properties to 18.2 MPa and 17.7 MPa, respectively. This reduction in tensile strength was due to agglomeration of CF with plasma- and non-plasma-treated PE. The fabrication condition of 180 °C temperature for 20 min showed better tensile properties than other conditions. The SEM results following tensile testing revealed enhanced CF filler adherence with plasma PE results, as well as fewer surface deformations. A higher flexural strength of 25.87 MPa was observed for the plasma treated PE/7 wt.% CF combination.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

    2073-4360

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    000774728400001

  • EID of the result in the Scopus database

    2-s2.0-85126314748