Existence of steady flows of a viscous incompressible fluid through a profile cascade and their L-r-regularity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00357469" target="_blank" >RIV/68407700:21220/22:00357469 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mma.7888" target="_blank" >https://doi.org/10.1002/mma.7888</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.7888" target="_blank" >10.1002/mma.7888</a>
Alternative languages
Result language
angličtina
Original language name
Existence of steady flows of a viscous incompressible fluid through a profile cascade and their L-r-regularity
Original language description
The paper deals with the steady Navier-Stokes problem, describing a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to one spatial period omega, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves Gamma(0) and Gamma(1), the Dirichlet boundary conditions on Gamma in and Gamma(P), and an artificial boundary condition on Gamma out (see Figure 1). For "small data," we consider the so-called "do nothing" boundary condition on Gamma out and prove the existence and uniqueness of a weak and strong solution in the L(R)-framework. For "large data," we consider an appropriately modified "do nothing" condition on Gamma out and prove the existence of a weak and strong solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
1099-1476
Volume of the periodical
45
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
1827-1844
UT code for WoS article
000713396000001
EID of the result in the Scopus database
2-s2.0-85118303631