All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The weak Stokes problem associated with a flow through a profile cascade in L-r-framework

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00364680" target="_blank" >RIV/68407700:21220/23:00364680 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/mana.202000320" target="_blank" >https://doi.org/10.1002/mana.202000320</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202000320" target="_blank" >10.1002/mana.202000320</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The weak Stokes problem associated with a flow through a profile cascade in L-r-framework

  • Original language description

    We study the weak steady Stokes problem, associated with a flow of a Newtonian incompressible fluid through a spatially periodic profile cascade, in the L-r-setup. The mathematical model used here is based on the reduction to one spatial period, represented by a bounded 2D domain Omega. The corresponding Stokes problem is formulated using three types of boundary conditions: the conditions of periodicity on the "lower" and "upper" parts of the boundary, the Dirichlet boundary conditions on the "inflow" and on the profile and an artificial "do nothing"-type boundary condition on the "outflow." Under appropriate assumptions on the given data, we prove the existence and uniqueness of a weak solution in W-1,W-r(Omega) and its continuous dependence on the data. We explain the sense in which the "do nothing" boundary condition on the "outflow" is satisfied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

    296

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    18

  • Pages from-to

    779-796

  • UT code for WoS article

    000897693700001

  • EID of the result in the Scopus database

    2-s2.0-85143889713