The weak Stokes problem associated with a flow through a profile cascade in L-r-framework
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00364680" target="_blank" >RIV/68407700:21220/23:00364680 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202000320" target="_blank" >https://doi.org/10.1002/mana.202000320</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202000320" target="_blank" >10.1002/mana.202000320</a>
Alternative languages
Result language
angličtina
Original language name
The weak Stokes problem associated with a flow through a profile cascade in L-r-framework
Original language description
We study the weak steady Stokes problem, associated with a flow of a Newtonian incompressible fluid through a spatially periodic profile cascade, in the L-r-setup. The mathematical model used here is based on the reduction to one spatial period, represented by a bounded 2D domain Omega. The corresponding Stokes problem is formulated using three types of boundary conditions: the conditions of periodicity on the "lower" and "upper" parts of the boundary, the Dirichlet boundary conditions on the "inflow" and on the profile and an artificial "do nothing"-type boundary condition on the "outflow." Under appropriate assumptions on the given data, we prove the existence and uniqueness of a weak solution in W-1,W-r(Omega) and its continuous dependence on the data. We explain the sense in which the "do nothing" boundary condition on the "outflow" is satisfied.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
296
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
779-796
UT code for WoS article
000897693700001
EID of the result in the Scopus database
2-s2.0-85143889713