All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Increasing Machining Accuracy Based on CNC Machine Tool Correction Data by Using Ad Hoc Modification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00360220" target="_blank" >RIV/68407700:21220/22:00360220 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/machines10050288" target="_blank" >https://doi.org/10.3390/machines10050288</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/machines10050288" target="_blank" >10.3390/machines10050288</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Increasing Machining Accuracy Based on CNC Machine Tool Correction Data by Using Ad Hoc Modification

  • Original language description

    The geometric accuracy of a workpiece represents one of the key parameters defining its quality, and it is affected by the appropriate selection of the machine tool, control system, NC program and cutting conditions. Up-to-date control systems contain advanced compensation functions, which increase the volumetric accuracy of the machine tools. Nevertheless, these functions use correction data measurements within the machine tool’s periodic maintenance plan. This paper introduces a method for ad hoc correction data modification. This modification is based on the difference between the real and nominal workpiece geometries, which are evaluated on a coordinate-measuring machine as a standard process in high-accuracy workpiece production. Correction data are compiled in the form of a three-dimensional structured mesh, where nodes of the mesh contain such correction values that interpolations within the mesh suppress workpiece geometric deviations. The correction mesh calculations are based on the assumption that the nodes are connected by imaginary springs and that they are initially in force equilibrium. Force disbalance is introduced by workpiece geometric deviations evaluated at arbitrary points. Then the new position of force-balanced nodes is calculated. Experimental results on a three-axis machining center have verified the proposed method, where geometric accuracy of the workpiece increased more than 85% without any negative effect on surface quality. The approach presented is efficient for increasing workpiece accuracy without the need for NC program modification.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Machine Tools and Precision Engineering</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Machines

  • ISSN

    2075-1702

  • e-ISSN

    2075-1702

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000804885600001

  • EID of the result in the Scopus database

    2-s2.0-85129513778