An MLP Neural Network for Approximation of a Functional Dependence with Noise
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00373655" target="_blank" >RIV/68407700:21220/23:00373655 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-981-19-9379-4_32" target="_blank" >https://doi.org/10.1007/978-981-19-9379-4_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-19-9379-4_32" target="_blank" >10.1007/978-981-19-9379-4_32</a>
Alternative languages
Result language
angličtina
Original language name
An MLP Neural Network for Approximation of a Functional Dependence with Noise
Original language description
Multilayer perceptron (MLP) neural networks used for approximation of the functional dependency are capable of generalization and thus to a limited noise removal, for example from measured data. The following text shows the effect of noise on the results obtained when data is interpolated by a neural network on several functions of two and one function of three variables. The function values obtained from the trained neural network showed on average ten times lower deviations from the correct value than the data on which the network was trained, especially for higher noise levels. The obtained results confirm the suitability of using a neural network for an interpolation of unknown functional dependencies from measured data, even when the noise load cannot be removed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Third Congress on Intelligent Systems
ISBN
978-981-19-9378-7
ISSN
2367-3370
e-ISSN
—
Number of pages
12
Pages from-to
443-454
Publisher name
Springer Nature Singapore Pte Ltd.
Place of publication
—
Event location
Bengaluru
Event date
Sep 5, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—