All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An MLP Neural Network for Approximation of a Functional Dependence with Noise

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00373655" target="_blank" >RIV/68407700:21220/23:00373655 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-981-19-9379-4_32" target="_blank" >https://doi.org/10.1007/978-981-19-9379-4_32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-19-9379-4_32" target="_blank" >10.1007/978-981-19-9379-4_32</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An MLP Neural Network for Approximation of a Functional Dependence with Noise

  • Original language description

    Multilayer perceptron (MLP) neural networks used for approximation of the functional dependency are capable of generalization and thus to a limited noise removal, for example from measured data. The following text shows the effect of noise on the results obtained when data is interpolated by a neural network on several functions of two and one function of three variables. The function values obtained from the trained neural network showed on average ten times lower deviations from the correct value than the data on which the network was trained, especially for higher noise levels. The obtained results confirm the suitability of using a neural network for an interpolation of unknown functional dependencies from measured data, even when the noise load cannot be removed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Third Congress on Intelligent Systems

  • ISBN

    978-981-19-9378-7

  • ISSN

    2367-3370

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    443-454

  • Publisher name

    Springer Nature Singapore Pte Ltd.

  • Place of publication

  • Event location

    Bengaluru

  • Event date

    Sep 5, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article