All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental Verification of a Compressor Drive Simulation Model to Minimize Dangerous Vibrations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00379903" target="_blank" >RIV/68407700:21220/24:00379903 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/app142210164" target="_blank" >https://doi.org/10.3390/app142210164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app142210164" target="_blank" >10.3390/app142210164</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental Verification of a Compressor Drive Simulation Model to Minimize Dangerous Vibrations

  • Original language description

    The article highlights the importance of analytical computational models of torsionally oscillating systems and their simulation for estimating the lowest resonance frequencies. It also identifies the pitfalls of the application of these models in terms of the accuracy of their outputs. The aim of the paper is to control the dangerous vibration of a mechanical system actuator using a pneumatic elastic coupling using different approaches such as analytical calculations, experimental measurement results, and simulation models. Based on the known mechanical properties of the laboratory system, its dynamic model in the form of a twelve-mass chain torsionally oscillating mechanical system is developed. Subsequently, the model is reduced to a two-mass system using the method of partial frequencies according to Rivin. The total load torque of the piston compressor under fault-free and fault conditions is simulated to obtain the amplitudes and phases of the harmonic components of the dynamic torque. After calculating the natural frequency and the natural shape of the oscillation, the Campbell diagram is processed to determine the critical revolutions. There is a pneumatic flexible coupling between the rotating masses, which changes the dynamic torsional stiffness. The dynamic torque curves transmitted by the coupling are compared with different dynamic torsional stiffnesses during steady-state operation and one cylinder failure. The monitored values are the position of the critical revolutions, the natural frequency, the natural shape of the oscillation, and the RMS of the dynamic load torque. The experimental model is verified by the simulation model. The accuracy of the developed simulation model with the experimental data are apparently very good (even more than 99% of the critical revolutions value obtained by calculation); however, it depends on the dynamic stiffness of the coupling. In this study, a detailed, comprehensive approach combining analytical procedures with simulation models is presented. Experimental data are verified with simulation results, which show a good agreement in the case of 700 kPa coupling pressure. The inaccuracy of some of the experiments (at 300 and 500 kPa pressures) is due to the interaction of the coupling’s apparent stiffness and the level of the damped vibration energy in the coupling, which is manifested by its different heating. Based on further experiments, a solution to these problems will be proposed by introducing this phenomenon effectively into the simulation model.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    25

  • Pages from-to

  • UT code for WoS article

    001366959400001

  • EID of the result in the Scopus database

    2-s2.0-85210253531