Large-scale minimization of the pseudospectral abscissa
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00381205" target="_blank" >RIV/68407700:21220/24:00381205 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1137/22M1517329" target="_blank" >https://doi.org/10.1137/22M1517329</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1517329" target="_blank" >10.1137/22M1517329</a>
Alternative languages
Result language
angličtina
Original language name
Large-scale minimization of the pseudospectral abscissa
Original language description
This work concerns the minimization of the pseudospectral abscissa of a matrixvalued function dependent on parameters analytically. The problem is motivated by robust stability and transient behavior considerations for a linear control system that has optimization parameters. We describe a subspace procedure to cope with the setting when the matrix-valued function is of large size. The proposed subspace procedure solves a sequence of reduced problems obtained by restricting the matrix-valued function to small subspaces, whose dimensions increase gradually. It possesses desirable features such as a superlinear convergence exhibited by the decay in the errors of the minimizers of the reduced problems. In mathematical terms, the problem we consider is a large-scale nonconvex minimax eigenvalue optimization problem such that the eigenvalue function appears in the constraint of the inner maximization problem. Devising and analyzing a subspace framework for the minimax eigenvalue optimization problem at hand with the eigenvalue function in the constraint require special treatment that makes use of a Lagrangian and dual variables. There are notable advantages in minimizing the pseudospectral abscissa over maximizing the distance to instability or minimizing the 7-tinfty norm; the optimized pseudospectral abscissa provides quantitative information about the worst-case transient growth, and the initial guesses for the parameter values to optimize the pseudospectral abscissa can be arbitrary, unlike the case to optimize the distance to instability and 7-tinfty norm that would normally require initial guesses yielding asymptotically stable systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Matrix Analysis and Applications
ISSN
0895-4798
e-ISSN
1095-7162
Volume of the periodical
45
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
2104-2134
UT code for WoS article
001343416000015
EID of the result in the Scopus database
2-s2.0-85207945198