Hybrid Inductive Models: Deterministic Crowding Employed
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03099379" target="_blank" >RIV/68407700:21230/04:03099379 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hybrid Inductive Models: Deterministic Crowding Employed
Original language description
Our research draws on experience with Group Method of Data Handling (GMDH) introduced by Ivachknenko in 1966. We have modified Multilayered Iterative Algorithm (MIA) that is commonly used to generate inductive models of real-world systems. In our algorithm heterogeneous units are used instead of units with given polynomial transfer function and therefore Hybrid Inductive Models (HIMs) are generated. This paper shows how to improve the efficiency of search for optimal HIMs. This is attained by employingDeterministic Crowding (DC) method proposed by Mahfoud in 1995. As a by-product of using DC method, we can estimate the importance of input variables for modeled output (sensitivity analysis).
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
A - Audiovisual production
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
0-7803-8360-5
Place of publication
Piscataway
Publisher/client name
—
Version
—
Carrier ID
neuvedeno