All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing Models Using Continuous Ant Algorithms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145837" target="_blank" >RIV/68407700:21230/08:03145837 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing Models Using Continuous Ant Algorithms

  • Original language description

    While constructing inductive models of a given system, we need to optimize parameters of units the system is composed of. These parameters are often real-valued variables and we can use a large scale of continuous optimization methods to locate their optimum. Each of these methods can give different results for problems of various nature or complexity. In our experiments, the usually best performing gradient based Quasi-Newton method was unable to optimize parameters for a well known problem of two intertwined spirals; its classification accuracy was close to 50%. Therefore, we compared several continuous optimization algorithms performance on this particular problem. Our results show that two probabilistic algorithms inspired by ant behaviour are ableto optimize parameters of model units for this problem with the classification accuracy of 70%.

  • Czech name

    Optimizing Models Using Continuous Ant Algorithms

  • Czech description

    While constructing inductive models of a given system, we need to optimize parameters of units the system is composed of. These parameters are often real-valued variables and we can use a large scale of continuous optimization methods to locate their optimum. Each of these methods can give different results for problems of various nature or complexity. In our experiments, the usually best performing gradient based Quasi-Newton method was unable to optimize parameters for a well known problem of two intertwined spirals; its classification accuracy was close to 50%. Therefore, we compared several continuous optimization algorithms performance on this particular problem. Our results show that two probabilistic algorithms inspired by ant behaviour are ableto optimize parameters of model units for this problem with the classification accuracy of 70%.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/KJB201210701" target="_blank" >KJB201210701: Automated Knowledge Extraction</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2nd International Conference on Inductive Modelling

  • ISBN

    978-966-02-4889-2

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

  • Publisher name

    Ukr. INTEI

  • Place of publication

    Kiev

  • Event location

    Kyjev

  • Event date

    Sep 15, 2008

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article